Design of a bioartificial pancreas(+).
نویسندگان
چکیده
INTRODUCTION In type 1 diabetes, the β-cells that secrete insulin have been destroyed such that daily exogenous insulin administration is required for the control of blood glucose in individuals with the disease. After the development of reliable techniques for the isolation of islets from the human pancreas, islet transplantation has emerged as a therapeutic option, albeit for only a few selected patients largely because there are not enough islets for the millions of patients requiring the treatment, and there is also the need to use immunosuppressive drugs to prevent transplant rejection. In 1980, the concept of islet immunoisolation by microencapsulation was introduced as a technique to overcome these 2 major barriers to islet transplantation. Microencapsulation of islets and transplantation in the peritoneal cavity was then described as a bioartificial pancreas. However, it is difficult to retrieve encapsulated islets transplanted in the peritoneal cavity, thus making it difficult to meet all the criteria for a bioartificial pancreas. A new design of a bioartificial pancreas comprising islets co-encapsulated with angiogenic protein in permselective multilayer alginate-poly-L-ornithine-alginate microcapsules and transplanted in an omentum pouch is described in this paper. MATERIALS AND METHODS The multilayer alginate-poly-L-ornithine-alginate microcapsules are made with ultrapure alginate using poly-L-ornithine as a semipermeable membrane separating the 2 alginate layers. The inner alginate layer is used to encapsulate the islets, and the outer layer is used to encapsulate angiogenic protein, which would induce neovascularization around the graft within the omentum pouch. RESULTS In in vitro studies, we found that both the wild-type and the heparin-binding growth-associated molecule (HBGAM)-fibroblast growth factor-1 chimera can be encapsulated and released in a controlled and sustained manner from the outer alginate layer with a mean diameter in the range of 113 to 164 µm when 1.25% high guluronic acid alginate is used to formulate this outer layer. DISCUSSION We are currently performing in vivo experiments to determine the ability of angiogenic proteins released from this outer layer to induce neovascularization around the grafts in the omentum pouch. We will subsequently examine the effect of co-encapsulation of islets with angiogenic protein on blood glucose control in diabetic animals. It is hoped that addition of tissue engineering to encapsulated islet transplantation will result in long-term survival of the islets and their ability to control blood glucose in type 1 diabetes without the necessity to use risky immunosuppressive drugs to prevent transplant rejection.
منابع مشابه
Progress and challenges of the bioartificial pancreas
Pancreatic islet transplantation has been validated as a treatment for type 1 diabetes since it maintains consistent and sustained type 1 diabetes reversal. However, one of the major challenges in pancreatic islet transplantation is the body's natural immune response to the implanted islets. Immunosuppressive drug treatment is the most popular immunomodulatory approach for islet graft survival....
متن کاملThe Bioartificial Pancreas, NMR and You!
By the conclusion of this talk, attendees should be exposed to and understand the following concepts: the function of the pancreas, with emphasis on the endocrine function; Diabetes (particularly type 1); traditional therapies for type 1 diabetes; limitations of these therapies; recent alternative therapies, particularly the tissue engineered bioartificial pancreas; how NMR can aid in the monit...
متن کاملThe bioartificial pancreas: progress and challenges.
Diabetes remains a devastating disease, with tremendous cost in terms of human suffering and healthcare expenditures. A bioartificial pancreas has the potential as a promising approach to preventing or reversing complications associated with this disease. Bioartificial pancreatic constructs are based on encapsulation of islet cells with a semipermeable membrane so that cells can be protected fr...
متن کاملComparison of Perfluorodecalin and HEMOXCell as Oxygen Carriers for Islet Oxygenation in an In Vitro Model of Encapsulation.
Transplantation of encapsulated islets in a bioartificial pancreas is a promising alternative to free islet cell therapy to avoid immunosuppressive regimens. However, hypoxia, which can induce a rapid loss of islets, is a major limiting factor. The efficiency of oxygen delivery in an in vitro model of bioartificial pancreas involving hypoxia and confined conditions has never been investigated. ...
متن کاملCreation of Bioartificial Organs
Regenerative and reparatory medicine is one of the most attractive therapeutic options of the coming years, and the power to replace entire damaged organic structures or organs is, in our opinion, the most innovative possibility in this field. In relation to the creation of bioartificial organs in particular, hearts, lungs, livers, kidneys, ovaries, intestines, pancreas and corneas have already...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of investigative medicine : the official publication of the American Federation for Clinical Research
دوره 58 7 شماره
صفحات -
تاریخ انتشار 2010